CEE 160L – Introduction to Environmental Engineering and Science

Lecture 5 and 6 Mass Balances

Mass Balance (MB)

- Very important tool
 - Track pollutants in the environment
 - Reactor/treatment design

Basis: Law of Conservation of Mass
 Mass can neither be created nor destroyed.

Control Volume

- MB performed over specific control volumes
 Well-defined system boundaries
- <u>Control volume (CV)</u>
 - Specific region in space for which MB is written
 - Define mass flowrates into and out of system.

Control Volume Examples

- Entire Earth
- Watershed
- Airshed
- Lake
- Sand filter
- Sediment Particle

I don't care about the leaks, where the heck is your control volume!

General Guidelines for Solving Mass Balance Problems

1. Draw system as a diagram.

- Include flows (inputs and outputs) as arrows.

2. Add numerical information to diagram.

- Flow rates, concentration, reaction rates, etc.

3. Draw dotted line around process component(s) to be balanced.

 — This is the CV!

General Guidelines for Solving Mass Balance Problems (cont'd)

- 4. Decide what material is to be balanced.
 - Air, water, pollutant
- 5. Write MB equation.
 - Then, substitute numbers into equation.
- 6. If only one unknown, solve for that variable.
- 7. If > one unknown, repeat the procedure.
 - Use different CV
 - Or use different material for same CV

Overall mass balance between times t and t+ Δ t (mass at time $t+\Delta t$) = (mass at time t) + (mass entered system between t and t+ Δ t) (mass exited between t and t+ Δ t) ╋ (mass generated/consumed by reaction processes between t and t+ Δ t)

Overall mass accumulation $(\Delta M / \Delta t)$ between times t and t+ Δ t (mass at time $t+\Delta t$) - (mass at time t) = Δt + (mass entered system between t and t+ Δ t) Δt (mass exited between t and $t+\Delta t$) Δt +mass generated/consumed by reaction processes between t and $t+\Delta t$

 $dM/dt = dM_{in}/dt - dM_{out}/dt + dM_{rxn}/dt$

Continuous stirred tank reactors (CSTR)

$$\begin{aligned} accumulation] &= [in] - [out] + [generation] \\ &\frac{dN_i}{dt} = F_{io} - F_i + \boxed{V\nu_i r_i} \mathop{\rm Rxn}_{\rm term} \end{aligned}$$

 F_{io} is the molar flow rate inlet of species *i*, F_{j} the molar flow rate outlet V is the tank volume v_{i} is the stoichiometric coefficient. τ_{i} is the residence time (the average amount of time a discrete quantity of reagent spends inside the tank)

For reaction $A \rightarrow$ products reaction rate is given by $r=kC_A$ Consumption of reactant A generally follows

$$C_A = \frac{C_{Ao}}{1+k\tau}$$

http://en.wikipedia.org/wiki/Continuous_stirred-tank_reactor

Commercial uses of CSTR

- Fermentors for biological processes in many industries
- Brewing
- Antibiotics production
- Cell culture
- Waste treatment
- http://encyclopedia.che.engin.umich.edu/Pag es/Reactors/CSTR/CSTR.html

A Simple Control Volume

A Well-Mixed Airshed or Lake

Continuously Stirred Tank Reactor (CSTR) Model

CSTR Model

- Fluid particles entering the reactor are instantaneously mixed throughout the reactor.
 - No concentration or thermal gradients exist.

 $-C_{reactor} = C_{effluent}$

- Rapid dilution of influent concentration
- Smoothes time-varying input flow and concentrations

For Constant Volume,
$$\frac{dm}{dt} = V \frac{dC}{dt}$$
 $\left[\frac{M}{T}\right]$

Steady State

- No change in mass in reactor with time
- All flow rates, T, P, concentrations, and liquid levels are constant with time.
- At steady state
 - Mass can be entering and leaving reactor
 - Reactions not necessarily at equilibrium
 - However, inputs, outputs and rates of consumption and generation balance each other.

Mass Balance Terms

Accumulation Term

Steady state = systemdoes not change with time $\Rightarrow \frac{dm}{dt} = 0$

Unsteady state = system changes with time $\Rightarrow \frac{dm}{dt} \neq 0$

Overall Balance for a Simple Constant Volume CSTR

• Neglecting reactions, additional sources/sinks for now

$$[Accumulation] = [Inputs] - [Outputs] \pm [Generation Consumption]$$

$$\frac{VdC}{dt} = Q_{in} C_{in} - Q_{out} C_{out}$$
where:
$$V = volume$$

$$Concentration in the reactor$$

$$C = concentration (mass/volume)$$

$$Q = volumetric flowrate$$

Consider an overflowing rain barrel

What is the volume? What is Q_{in}? What is C_{in}? Is it well stirred? What is Q_{out}? What is C_{out}?

Example 1: Lake Contaminated with MTBE (Steady State)

Where: C = concentration of MTBE [mg MTBE/L] Q = volumetric flowrate of water [L/min] ρ_w = density of water [mg/L]

1. Steady State Mass Balance on Lake Water Only

At steady state there if no net accumulation or depletion of water in the lake

 $Q_{out} = Q_{in(1)} + Q_{in(2)} = 6000L/min$

At steady state then amount of water and MTBE that flows in has to equal the amount of water MTBE and water that flows out

To balance the mass then

 $C_{out}Q_{out} = [C_{in(1)} + C_{in(2)}]x[Q_{in(1)} + Q_{in(2)}] = 20mg/L*6000L/min$

 $C_{out}6000L/m = (20mg/L)(5000L/min+1000L/min)$

 $C_{out}=20*5000/6000=16.7$ mg/L (inflow of clean 2nd river dilutes MTBE outflow)

Where: C = concentration of MTBE [mg MTBE/L]

- Q = volumetric flowrate of water [L/min]
- $\rho_{\rm w}$ = density of water [mg/L]

If 20mg/L of MTBE and 5000L/min water flows in, then at steady state 20mg/L of MTBE and 5000L/min water must flow out.

Residence Time

- Residence time=amount present/rate of removal
 - 1. Hydraulic residence time (HRT)

$$HRT = \theta_{h} = \frac{V}{Q_{out}} = \frac{Volume \text{ in System}}{Flow Rate Out of System}$$
$$= Average Time Fluid Stays in Reactor$$

Example: HRT in drinking water distribution system = 1.3 d

Residence Time

Residence time=amount present/rate of removal

2. Pollutant residence time (PRT)

$$PRT = \frac{C_{in}V_{in}}{C_{out}V_{out}} = \frac{Pollutant Mass in System}{Pollutant Mass Out of System}$$

= Average Time Pollutant Mass Stays in Reactor

 $dM/dt = dM_{in}/dt - dM_{out}/dt + dM_{rxn}/dt$

Mass balance of fish farm

Mass influx?

Mass outflux?

Reaction terms?

Mass balance of fish farm

Mass influx : mass fish added initially, fish feed added, inspired O2

Mass outflux: uneaten feed, fish death, fish waste, respired CO2

Reaction terms: mass increase of fish

Consider other factors

Mass accumulation?

Mass consumption?

In flows?

Out flows?

http://www.waikatoregion.govt.nz/Environment/Naturalresources/coast/Coastal-pressures/Marine-farming/Marine-farmingscience-projects/